Potassium Thiocyanate Complex of 1,4,7,10,13,16-Hexaoxacyclooctadecane

By P.Seiler, M. Dobler and J.D.Dunitz
Laboratory of Organic Chemistry, Federal Institute of Technology (ETH), 8006 Zürich, Switzerland

(Received 27 June 1974; accepted 5 July 1974)

Abstract

C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}\). KNCS, monoclinic, $P 2_{1} / c, a=$ $8 \cdot 190(4), b=14 \cdot 285(7), c=7 \cdot 775(4), \AA \beta=99 \cdot 19(10)^{\circ}$, $M=361 \cdot 50, Z=2, D_{x}=1 \cdot 34 \mathrm{~g} \mathrm{~cm}^{-3}$. The potassium ion occupies a crystallographic centre of symmetry and is coordinated to the six oxygen atoms of the hexaether, which has effective $D_{3 d}(\overline{3} m)$ symmetry. The thiocyanate anions are disordered and interact only weakly with

 the cations.Introduction. Intensity measurements (1930 reflexions out to $\sin \theta / \lambda=0.68 \AA^{-1}$), structure analysis and refinement were carried out as for the sodium complex (Dobler, Dunitz \& Seiler, 1974). The parameters of the disordered thiocyanate group were held constant during the later refinement cycles with modified weights. Table 1 lists coordinates of heavy atoms from the final refinement cycle with $r=14 \AA^{2}$, Table 2 the corresponding vibration tensors. Hydrogen positions,

Table 1. Fractional coordinates (and estimated standard deviations) of the non-hydrogen atoms Values are $\times 10^{4}$.

	x	y	z
K	$0(0)$	$0(0)$	$0(0)$
$\mathrm{O}(1)$	$713(2)$	$-1797(1)$	$1232(2)$
$\mathrm{C}(2)$	$2412(3)$	$-2040(1)$	$1594(3)$
$\mathrm{C}(3)$	$3312(2)$	$-1267(1)$	$2649(2)$
$\mathrm{O}(4)$	$3222(2)$	$-447(1)$	$1619(2)$
$\mathrm{C}(5)$	$4029(3)$	$318(1)$	$2558(3)$
$\mathrm{C}(6)$	$3927(2)$	$1150(2)$	$1354(4)$
$\mathrm{O}(7)$	$2270(2)$	$1472(1)$	$1004(2)$
$\mathrm{C}(8)$	$2071(3)$	$2211(1)$	$-228(3)$
$\mathrm{C}(9)$	$304(3)$	$2544(1)$	$-468(3)$
S, N	$-1330(0)$	$-5(0)$	$3637(0)$
C	$-258(0)$	$-1(0)$	$4754(0)$

Table 2. Vibration-tensor components $\left(\AA^{2}\right)$ of the nonhydrogen atoms
Values are $\times 10^{3}$.

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
K	45	33	70	-4	-16	11
$\mathrm{O}(1)$	52	32	55	6	5	0
$\mathrm{C}(2)$	57	43	54	16	9	2
$\mathrm{C}(3)$	51	52	49	11	-1	7
$\mathrm{O}(4)$	43	49	45	3	0	3
$\mathrm{C}(5)$	44	61	66	-2	-12	0
$\mathrm{C}(6)$	40	58	87	-12	8	4
$\mathrm{O}(7)$	44	43	48	-6	7	3
$\mathrm{C}(8)$	60	43	54	-14	11	5
$\mathrm{C}(9)$	72	33	47	1	6	-1
$\mathbf{S}, \mathrm{~N}$	71	69	77	2	4	-8
C	36	45	81	1	6	-4

calculated from stereochemical considerations, are given in Table 3. The final R was $0.042(0.058$, weighted).*

Discussion. Fig. 1 shows the very regular ring conformation and coordination. The six oxygen atoms lie

[^0]

Fig. 1. Bottom: KNCS complex viewed in direction normal to the mean plane, showing atom numbering. Top: view along a direction in the mean plane. The vibration ellipsoids are drawn at the 50% probability level (Johnson, 1965).

Fig. 2. Stereoscopic view of the crystal structure looking along the b axis. The c axis is vertical.

Table 3. Fractional coordinates of the hydrogen atoms calculated assuming local $C_{2 v}$ symmetry of the methylene groups with $\mathrm{C}-\mathrm{H}=1 \cdot 0 \AA, \mathrm{H}-\mathrm{C}-\mathrm{H}=109^{\circ}$

Values are $\times 10^{3}$.

	x	y	z
$\mathrm{H}(2)$	256	-264	224
$\mathrm{H}(2)^{*}$	285	-210	46
$\mathrm{H}(3)$	274	-115	369
$\mathrm{H}(3)^{*}$	448	-145	305
$\mathrm{H}(5)$	346	49	356
$\mathrm{H}(5)^{*}$	521	17	299
$\mathrm{H}(6)^{*}$	468	165	186
$\mathrm{H}(6)^{*}$	427	93	21
$\mathrm{H}(8)$	283	274	19
$\mathrm{H}(8)^{*}$	233	198	-138
$\mathrm{H}(9)^{*}$	1	272	68
$\mathrm{H}(9)^{*}$	18	311	-127

alternately $0.19 \AA$ above and below their mean plane so that the coordination polyhedron around K^{+}is actually a very flat octahedron (K...O, 2.770-2.833 \AA, average $2.805 \AA$). The $\mathrm{C}-\mathrm{C}$ distances are again somewhat short ($1.497-1.507 \AA$, average $1.504 \AA$), possibly because of internal motions in the ring. The rigid-body model gives rather poor agreement between observed and calculated $U_{i j}$ values $\left[\left\langle\left(\Delta U_{i j}\right)^{2}\right\rangle^{1 / 2}=0.0040 \AA^{2}\right.$, $\left\langle\sigma^{2}\left(U_{i}\right)\right\rangle^{1 / 2}=0.0010 \AA^{2}$] and the vibration ellipsoids of the C atoms (Fig. 1) are noticeably anisotropic. Bond angles at O (111.6-112.9 ${ }^{\circ}$, average 112.2°) are again larger than those at $\mathrm{C}\left(107 \cdot 5-109 \cdot 4^{\circ}\right.$, average 108.5°).

The thiocyanate groups, which formally occupy crystallographic centres of symmetry, are disordered. The two terminal atoms (statistically N or S) are both $3 \cdot 19 \AA$ from a K ${ }^{+}$ion, and the resulting alternation of anions and cations along the c axis is a prominent feature of the crystal structure (Fig. 2). Layers in the ($10 \overline{2}$) planes contain interpenetrating roughly square
nets of complexed hexaether- K^{+}cations and thiocyanate anions. The short contacts of $3 \cdot 19 \AA$ connect the anions to cations of neighbouring layers and the whole arrangement can be regarded as a very distorted rocksalt-type structure.

Table 4. Bond distances (\AA), bond angles $\left(^{\circ}\right)$ and torsion angles $\left(^{\circ}\right)$ in the centrosymmetric 18-membered ring

Atoms	Distance	Angle	Torsion angle
234	2-3	1-2-3	1-2-3-4
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	1.418	$112 \cdot 9$	- $170 \cdot 8$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(4)$	1.497	$108 \cdot 1$	-65.2
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(4)-\mathrm{C}(5)$	$1 \cdot 414$	$108 \cdot 9$	178.9
$\mathrm{C}(3)-\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 418$	111.6	$178 \cdot 1$
$\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(7)$	1.507	108.2	$70 \cdot 0$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(7)-\mathrm{C}(8)$	1.418	$109 \cdot 4$	-175.5
$\mathrm{C}(6)-\mathrm{O}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 417$	$112 \cdot 0$	-177.4
$\mathrm{O}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}\left(1^{\prime}\right)$	1.507	$108 \cdot 9$	-65.3
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$1 \cdot 424$	$107 \cdot 5$	-177.5

Table 5. Distances (\AA) involving the potassium and thiocyanate ions

$\mathrm{K} \cdots \mathrm{O}(1)$	2.770	$(\mathrm{~S}, \mathrm{~N})-\mathrm{C}$	1.12
$\mathrm{~K} \cdots \mathrm{O}(4)$	2.811	$(\mathrm{~S}, \mathrm{~N})-(\mathrm{S}, \mathrm{N})$	2.78
$\mathrm{~K} \cdots \mathrm{O}(7)$	2.833		
$\mathrm{~K} \cdots(\mathrm{~S}, \mathrm{~N})$	3.19		

We thank Professor J. Dale for a sample of the compound. This work was supported by the Swiss National Fund for the Advancement of Scientific Research.

References

Dobler, M., Dunitz, J. D. \& Seiler, P. (1974). Acta Cryst. B30, 2741-2743.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30558 (4 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

